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HYDRODYN~IICS AND HEAT TRANSFER IN SUPERFLUID HELIUM 
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Utilization of the unique properties taken on by substances at low temperatures (chiefly 

superconductivity) involves a number of thermophysical problems, one of which is the cooling 
nf various specimens to very low temperatures [i]. Many of the investigations along this line 
are devoted to heat exchange with He I, the nonsuperfluid phase of helium. However, recently 
there has been intensive study of the possibility of using superfluid helium, He II, as the 
coolant in cryogenic installations. This is due to a number of specific features of He II. 

Perhaps the most important of them is that under the effect of a temperature drop, there 
appears a special kind of macroscopic motion (of the convection type), as a result of which 
large heat fluxes are observed even at low temperature gradients. The advantage from the 
purely design-oriented point of view is that this eliminates complex problems involved in set- 
ting up forced circulation of the flow. 

Equally important is the behavior of He II in nonstationary conditions. Unlike the case 
of other media, in superfluid helium the propagation of thermal perturbations is of a wave na- 
ture. This, on the one hand, leads to high rates of heat removal and, on the other hand, of- 
fers new possibilities for controlling the heat exchange. 

Furthermore, for the operation of some cryogenic systems -- e.g., instruments used in 

astrophysical research -- it may be necessary to reach temperatures T lower than 2~ and thus 
He II is the only suitable coolant. 

Being superfluid, the helium can penetrate into very narrow slits -- e.g., into the inter- 
turn spaces of superconductive coils -- and intensify the heat exchange there. Lastly, it is 
probable that other specific phenomena -- e.g., the thermomechanical effect -- may be used in 

cryogenic installations. 

Today there are many studies devoted to heat transfer between solids immersed in super- 
fluid helium (see, e.g., the surveys [2-4]). Researchers have accumulated large amounts of 
experimental data, relating chiefly to thermal resistance at the boundary (the Kapitsa jump), 
critical heat fluxes at which a phenomenon of the film-boiling type occurs, and also data on 
heat exchange in various regimes. 

When it comes to theoretical generalizations, the situation is much worse. Up to now, 
not only was there no theory of heat transfer in superfluid helium, but there was not even 
any agreement regarding the physical processes taking place at the boundary and in the liquid. 
As a result of the lack of such a theory, new experimental results not only do not clarify 

the general situation but, on the contrary, make it even more confused. 

There have, of course, been attempts to construct a theoretical justification for various 
experimental facts (for further details on this score, see the surveys [2-4]); here we must 
point out the following facts. In the study of specific problems of heat exchange with lle II, 
generalizations have often been made within the framework of concepts taken from the theory 
of heat exchange in the boiling of classical liquids. In such cases the specific features 
of superfluidity have been taken into account only partially, and sometimes they have been to- 

tally ignored. 

At the same time, the laws of hydrodynamics, including the propagation of heat in He II, 
are radically different from the behavior of ordinary systems. But as in the case of the 
boiling of classical liquids, the hydrodynamic processes taking place in a volume of super- 
fluid helium play an extremely important role and represent the basis (together with the 
ideas of the theory of boiling) on which one can build an adequate theory of heat exchange 

in He II. 
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Recently, the hydrodynamics of He II have been intensively studied, owing to the possi- 
bility of using helium as a refrigerant. At the same time, researchers in this discipline 
have obtained a number of classical results giving a unified picture of such a system. 

This survey is intended to describe the present status of the hydrodynamics of a super- 

fluid liquid. In view of the purpose of the article, attention has been concentrated mainly 
on questions related to heat transfer in a volume of He II. 

i. Stationary Thermomechanics 

i.i. The Two-Liquid Model. If we trace the history of the discovery of superfluidity, 
we see that He II might more properly be called super-heat-conductive. The transition to the 

superfluid state was first observed by Kamerlingh Onnes [5]. When temperatures lower than 
2.17~ were reached, the surface of violently boiling helium suddenly became calm, and the 

boiling stopped. It was assumed (and subsequently confirmed by experiment) that the lack of 
bubble-type boiling was the result of the unusually high thermal conductivity of He II, which 

made impossible the overheating necessary for bubble formation. The thermal conductivity of 

He II was first measured by Keezom [5]. It was found that the quantity X'eff, defined as the 
ratio of the heat flux W to the temperature gradient VT in a capillary filled with helium, 

has a numerical value millions of times as high as the analogous quantity for He I and hun- 
dreds of times as high as the values for coppper and silver. This regime was established 

almost instantaneously; it appeared that He II was an ideal refrigerant capable of very rapid- 
ly transferring enormous heat fluxes. 

Besides the phenomenon of superconduction of heat, other properties of He II were also 
discovered -- e.g., the thermomechanical effect or the absence of viscosity -- which do not fit 

at all into the framework of classical ideas. 

All of these effects can be explained by using the two-liquid model which fellows from 
Landau's theory of superconductivity [6]. From the viewpoint of hydrodynamics, He II can be 
viewed as a mixture of two components. One of them, a superfluid liquid with density Ps(P, 
T), moves with velocity v . The superfluid component has no shear viscosity, and therefore 

S 
it cannot be subjected to torsion (rot v s ~ 0), and also cannot absorb and carry heat. The 
other component is normal, with density pn(p, T) and velacity Vn and behaves like an ordi- 
nary viscous liquid. The motion of the two components is thermodynamically reversible and con- 
sequently independent. 

The equations of motion of such a liquid can be obtained on the basis of the laws of 

conservation [6, 7]. We shall write out and explain these equations: 

ap 
- -  -}- div j = O, ( 1 )  
at 

Oh + aTI~___Lh = O, (2)  
at Orb 

as (3) 
- -  q- div Sv,~ = O, 

Ot 

Ot q-V ~q- =0 .  (4) 

Equations (i), (2) are the usual laws of conservation of mass and impulse density. The 

impulse flux tensor Hik is equal to 

U~h : p~v~iv~h § p~v~v~h § 81~p. (5) 

The subscripts i, k denote the coordinates x, y, z; ~ik is the unit tensor. 

As can be seen from (5), the complete impulse-flux tensor can be decomposed into a nor- 
mal part and a superfluid part, and Eq. (2) has an obvious structure. Equation (3) is also 
obvious. This is the law of conservation of entropy. Here we see reflected the fact that 
entropy is carried over only by the normal component. The expression (4) for the velocity 
of the superfluid component is new, in contrast with the expression for an ordinary liquid. 
It contains the information that the superfluid component cannot be subjected to torsion be- 
cause it has no shear viscosity. Therefore, rot v s = O, and consequently, the convection term 
is (~V)v s = Vv~/2. The driving force for the superfluid part is the chemical potential~(p,T). 
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The case of dissipative motion was analyzed by Khalatnikov [7]. It was found that, un- 

like the case of ordinary liquids, in helium there are not three but five independent kinetic 

coefficients. One of these, the shear-viscosity coefficient q, exists only for the normal 
component, as was to be expected. In addition, we find three coefficients of bulk viscosity 
and a coefficient of thermal conductivity • 

We write an expression for the energy flux W which follows from Eqs. (1)-(4) and which 
will be useful in our further discussion: 

v: (6) W =  ~ -~ - -~  j + STv~ q- pnv~ (v~-- Vs, v n ) + W i r  r, 

here Wir r stands for the irreversible fluxes caused by the dissipative effects, which are 
negligibly small for all real cases. It should be noted at once that we observe a macroscop- 
ic energy flux W = Sty even in the case when the total mass flow j is equal to zero. (The 

n 
quantity PVn(V n -- Vs, Vn) is much smaller than STy n for all velocities that can actually be 
attained.) 

The system of equations (1)-(4) is very complicated, and furthermore, it is not closed. 
Because there are two velocities, the thermodynamic quantities are functions of the relative 
velocity w = (v -- Vs)* , and determining this functional relation requires solving a complex 
problem in quantum mechanics. However, in the case of low velocities the functional relation 
can be obtained from thermodynamic considerations, as was done in [7], and thus the system 
can be closed. 

We consider a special but very important case of the solution of these equations. Using 
Lhe thermodynamic identity pd~ = --SdT + dp + (pn/2p) wdw, we rewrite (4) as 

Dvs + 1 9~ S 
- - V P - -  ~ q- V wz = 0, ~ = - -  (7) 

Dt 9 O 9 

Here D/Dt denotes, as usual, the operator 3/3t + (VsV). From this equation it can be seen 
that even when there is no pressure gradient in the system, there will be a motion caused by 
the temperature gradient. The superfluid component moves in the direction of the heater, and 

the normal component moves away from it, so that the total mass flow will be zero, in accor- 

dance with the fact that Vp = 0. The energy flux in this case is nonzero and is equal to STy n, 
sinc~ the heat is carried only by the normal component. 

To this kind of motion, which is reminiscent of convection, we shall, following the ter- 
minology now widely used in non-Soviet literature, apply the term "counterflow," and we shall 
call the corresponding section "thermomechanics" [8]. As mentioned above, the capability of 
He II, when acted upon by a temperature gradient, to give rise to a motion with macroscopic 
heat fluxes makes it a very promising material for thermophysical applications, 

As an example of one of the properties of counterflow, we shall consider Keezom's experi- 
ment [5]. For small velocities (and, in accordance with the formula W = STVn, small heat flux- 
es), in Eqs. (1)-(4) we can disregard the variation of density, entropy, # and nonlinear terms. 
In this case the system (1)-(4) (with dissipative terms) can be subdivided into equations for 
the normal component and the superfluid component: 

( Ov~ ) P~ (8) 
P~\  3t q-(v~v) v , ,  = - -  9 VP--PsoVT+~]V2V~, 

9s \O t @V 9--~-) p VP+P~eV T" (9) 

Here we have taken account of the shear viscosity q for the normal component. The bulk vis- 
cosity does not play a role in this type of motion, and the thermal conductivity contributes 

only aslight correction to the final answer. 

*In ordinary hydrodynamics, owing to Galilean invariants~ the internal characteristics are, 

sf course, independent of the velocity. 
The condition for disregarding the variation in density is, as is known, the following: 
2 2 v /ci << i. For entropy we requlre an analogous condition, v2/c~, v = maX(Vn, Vs). 
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For (9) we can see that in the stationary case Vp = SVT, the so-called London formula. 
The temperature drop is accompanied by a pressure drop, which forces the viscous normal com- 

ponent to flow. From (8) we have ~V2v = (p /p) Vp + ps ~ (Vp/po) = Vp. It follows from this 
that when there is motion along a capi~lary,nw = STy is proportional to Vp, and in accor- 

dance with London's formula, proportional to VT; the ~roportionality constant depends on the 
geometry of the capillary. For a tube with radius a we have 

W - -  a 2 S Z T  v T  = )~;ffV T. (10) 
8~ 

For a : 0.i cm (T = 2~ we obtain l'eff 103 W/cm.~ It should be noted that the thermal 
conductivity of He I is equal to 3.10 -~ W/cm.~ and that of copper is 5 W/cm.~ 

Thus, we have shown how the high thermal conductivity of He II can be explained within 
the framework of the hydrodynamics of superfluidity. In principle, the system of equations 

(1)-(4) enables us to solve the problem of energy fluxes for a given temperature distribution 
and (or) the problem of temperature distribution for given fluxes. For motions of the coun- 

terflow type, where j = 0, Eqs. (i) and (2) are identically satisfied, and a theory of this 
kind would be formally close to gasdynamics (with the substitution @ § o, p § T, where ~ = 

o(T) is a condition of the barotropic-distribution type). If j # 0 (forced flow), this an- 

alogy disappears and we then must deal with highly complex and specific problems. A discus- 
sion of the various questions connected with laminar flow of He II is contained in [5]. 

Unfortunately, the situation in reality is more complicated. Even when we reach some 

critical fluxes of W = i0-~-I0 -2 W/cm 2 (which corresponds to Vn, v~ ~ i cm/sec), we already 
find that the function W(VT), which agrees so well with the theory, is no longer valid. In 

the region of critical fluxes, the form of this function is affected by a great many factors, 
going back to the prehistory of the process. Obviously this is due to a change of regime of 

the transition-to-turbulence type. However, as the flux W increases, the function W(VT) 
takes on the universal form (see [4]) 

V T N W a ( 1 1 )  

( F i g s .  1 and 2 ) .  Sometimes [2,  3] we f i n d  (11) w r i t t e n  in  the  form W = ~ef fVT,  where  t he  ex -  
p r e s s i o n  proposed for Aef f is the empirical formula 

~eff= C (T) TNp 2/a 0 4 I s  (vT) -2/3. (12) 

In the supercritical regime the effective thermal conductivity of helium sharply decreas- 

es. For example, for VT = 0.01~ and T = 1.9~ we have lef f = i00 W/cm-deg, which is 
lower by one and a half orders of magnitude than in the laminar regime (i0). 

The relation (12), with experimentally determined coefficients C(T), is one of the most 
important achievements in the investigation of the thermal conductivity of He II. In this 
form it can be used for concrete calculations in cryogenic systems or serve as an auxiliary 
formula for considering some theoretical questions (e.g., the question of the critical heat 

fluxes that precede boiling). 

Expression (12) is suitable from the standpoint of applications, but it has no great 

theoretical significance. The question of the value of C(T) and the question of the origin 

of (Ii) itself remains ultimately unexplained up to the present time. 

The value of W (or v ) increases at a rate which is less than linear as VT increases; 
this means that in the volume of helium there arises some mechanism which causes a retarda- 

tion of the action on the two components. In 1949, Gorter and Mellink [9] assumed that in 
the supercritical regime the motion of the superfluid component and the normal component will 
not be independent but will take place with friction, and the frictional force (per unit vol- 
ume) is equal (Fig. 3) to 

F,= = A (T) p~p~ (v,~ - -  v~) 2 (v,~ - -  v,) .  ( 1 3 )  

It is not difficult to see that such friction leads to formula (ii). If in Eq. (8) we add 
a term Fsn and disregard ordinary viscosity, which is negligible in this case, then in the 
stationary regime we can obtain (remembering again that W = STy ): 

n 

*It should be recalled that we are talking about counterflow. 
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Fig. 2. Heat flux W (W/Cm 2) as a function of temperature for various temperature 
gradients: i) VT = 10-1-K/cm; 2) 10-2; 3) 10-3; 4) 10 -4 . 
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Fig. 3. Coefficient of mutual fric- 
tion A(T) (cm~ as a function 

of temperature (from the measurements 
of [lO]). 

P'~ W a, ( 1 4 )  V T = A ( T )  ~ a T 3  

which coincides with (ii). 

Even though it leads to agreement with experimental results, the Gorter--Mellink hypothe- 
sis of mutual friction is merely a reformulation of the problem. The appearance of friction- 
al forces which violate the condition of nondissipative motion and are subject to formula 
(13) has been found to be a problem which is quite complex and has not been finally solved 
to the present day. 

1.2. Critical Velocities; Quantum Vortices. Today there is no doubt that the mutual 
friction is due to so-called quantum turbulence, the presence of randomly oriented quantum 
vortex lines in the helium. In order to understand that this is so, we must turn to the 
foundations of two-velocity hydrodynamics [6]. 

Because of the very low temperature, there are substantial quantum effects in the hel- 
ium. Therefore heat enters the helium in the form of a quantum-type collective motion of 
all the atoms, the so-called phonons and rotons, or elementary perturbations, as they are 
known. The collection of all phonons and rotons may drift as a unit through the liquid, 
carrying energy, momentum, and mass, i.e., behave like an ordinary gas (a gas of quasiparti- 
cles). Because of the interaction of the quasiparticles, this gas behaves like a viscous 
gas. According to Landau, the mass carried by this motion is associated with the mass of 
the normal component. The remainder of the mass (the background) is the superfluid component. 
The quantum nature is manifested in the fact that the phonons and rotons appear singly, pos- 
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sessing a momentum p and an energy s(iPl)" If the helium moves with velocity V,  then by vir- 
tue of Galileo's transformation, we have (in the laboratory system) 

~' = ~ (Ipt) + pV. ( 1 5 )  

If c' < 0, then in the moving helium it is thermodynamically advantageous to have the forma- 
tion of elementary perturbations, i.e., the kinetic energy can be converted into heat. The 
concrete form of s(Ipl) predicted by Landau is, however, not very significant to us; what is 
important is the fact that when V > rain slpl/Ipl, E' must be negative and the motion of the 
helium must be accompanied by dissipation. Thus, the existence of critical velocities follows 
from Landau's theory [6]. 

However, the value for Vcr obtained by this formula is equal to 60 m/sec, which is ap- 
proximately i000 times the experimentally observed value. This was one of the major defects 

of Landau's theory. Another was the question of the vortex-free motion of helium, its failure 
to go into rotational motion. 

As noted earlier, the fact that the superfluid component does not interact with the walls 
means that it cannot be brought into rotation. In confirmation of this, an experiment [ii] 

was devised for measuring the depth of the parabolic meniscus of rotating helium. It was ex- 
pected that, since only the normal component rotates, the depth of the meniscus would be less 

by a factor of pn/p than in an ordinary liquid. The experiment yielded a negative result. 
The meniscus was found to be the same as if the entire liquid were rotating. 

In order to explain this situation, Feynmann and Onsager [12] assumed, justifying their 
assumption from the quantum-mechanics point of view, that the condition of nonvorticity, 

rot v s = 0, is satisfied in rotating helium everywhere except at one-dimensional singulari- 
ties (vortex lines). Around the vortex lines the circulation is constant and equal to 

2nh ~, v ~ l  = ( 1 6 )  
mile 

1 
The velocity field of the unified vortex accordingly becomes vs( r )  = ~ .  . It should be 

mile IrJ 
noted that rot v s = 0 everywhere except at the vortex point, where the curl is undefined. 

When a certain critical value of rotational velocity is exceeded, there will be formed 
in the vessel containing the helium a number of vortices which are uniformly distributed in 
the volume, and the average motion will imitate the rotation of a solid. 

Here it is important to consider the following. Since the velocity increases near the 
axis of the vortex, at some value of r it will exceed the Landau critical velocity. A thin 

tube of the order of several angstroms will be formed, consisting entirely of the nonsuper- 
fluid component. As a result, we find that the density of the normal component is nonuniform 

near the axis of the vortex. 

When the normal component moves through the structure of such a vortex, the photons and 

rotons are scattered over the vortex, transferring some of their momentum to it. Thus, when 
there are vortices, the relative motion of the two components will no longer be nondissipa- 

tive, and we will find mutual friction. As was shown in [13], the force of mutual friction 

(per unit length of the vortex) is proportional to the relative velocity w. It should be 
noted that unlike Landau's critical velocities, the superfluid component does not disappear 
and the hydrodynamics retains its two-velocity character. There are quite a few experimental 
proofs of the existence of vortex lines, ranging all the way to the photographing of the vor- 

tex lattice (for more details, see [14]). 

The foregoing relates to the case of helium which is rotating. Obviously, when helium 
moves in tubes, we must observe something similar, i.e., when certain velocities of motion 
(of the order of 1 cm/sec) are exceeded, there will appear in the volume a number of vortex 
lines (which, of course, are no longer straight lines) and vortex rings, whose existence leads 
to mutual friction~ 

Opinions differ concerning the mechanism of the occurrence of vortices in He II. The 
most widespread theory is the fluctuation theory of vortex-nucleus formation [15]. 

1.3. Superfluid Turbulence. In the preceding section we arrived at the conclusion that 
when the normal component moves with respect to a vortex, there arises a frictional force 
proportional to the length of the vortex line and to v n -- v s . How does the presence of this 
force lead to the Gorter~-Mellink formula, and thus to a cubic function? 
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The theory of supercritical counterflow in channels was first proposed by Vinen [13]. 

The following qualitative picture is assumed. When the critical velocities (or heat fluxes) 
are exceeded, vortex lines (no longer straight) or vortex rings are created in the channel. 
The total length of these per unit volume is L. As the counterflow velocity increases, the 
value of L will increase and the vortex lines will form a confused tangle. When L is large 

enough to make the intervortex distance ~ = L -I/2 much smaller than the dimensions of the 
channel, the flow loses its individuality and the picture of the vortex lines becomes univer- 
sal. Such a situation is called superfluid turbulence. As is known, a curved vortex line 
must move at some velocity which depends on the shape of the line and on its vortex intensity 
z. For example, a vortex ring of radius R moves with a velocity v = (• in (R/ao), where 
ao is the thickness of the vortex tube. However, if the vortex is not free but interacts with 
external forces (in the present case this means friction from the normal component), there 
arises a force which is perpendicular to the plane of the ring, the so-called Magnus force. 
Analysis shows that it must lead to an increase in the length of the vortex line, and L must 
increase. However, as L increases, the tangle becomes denser and vortex-line intersection 
effects come into play. As a result of the collisions, the rings will be broken up, forming 
rings of smaller dimension, and these in turn will again be subdivided, and so on, ending 
with the formation of circles of very small dimensions, known as rotons. Thus, the energy of 
the kinetic motion is converted into heat. This mechanism prevents the length L from increas- 
ing indefinitely under the action of the Magnus forces. 

On the basis of these considerations, Vinen [13] obtained the balance equation for the 
quantity L: 

d__L = ' ~  L v ~ - - v ~  I L ~/-~ - -  13L 2, ( 1 7 )  
dt 

where a and ~ are empirical parameters. 

Although this is a crude and in fact qualitative conclusion, Eq. (17) satisfactorily de- 
scribes almost all the experiments conducted with supercritical flows. In particular, it 

yields formula (13). To see this, we note that in the stationary case (dL/dt = 0) we have 

L~q = - ~  (v~ - -  v~)< (18) 

Furthermore, since the force per unit length is proportional to the relative velocity f ~ 

(v n --Vs) , the total force (for an isotropic distribution of the vortex lines) must be 

~2 
F~,~ ~ - ~  (v,~ - -  v~) 2 (V~ - -  v~) .  ( 1 9  ) 

Equation (17) was obtained more than twenty years ago. Recently, interest in superfluid 
turbulence has again increased. This is due precisely to the question of using He II as a 
refrigerant. A fairly large number of experimental studies have been published (see [16]). 

Among the theoretical investigations we may mention the study by Schwarz [16], who again con- 

sidered the question of the dynamics of a vortex tangle. Schwarz introduces the distribution 
function h(vl, t), the length of the vortex lines per unit volume whose velocities lie in the 
interval Vl, v I + dr/. The equation for the quantity l(v/, t) was obtained by Schwarz practi- 
cally directly from theequations of the dynamics of vortex motion. The quantity h(Vl, t) is 
of greater interest than L, and Schwarz's results are more numerous. It is interesting that 

for L = fh(vl)d3vl he obtains an equation of the type (17), although he gives it a somewhat 
different interpretation and does not include any adjusting parameters. 

However, both in [16] and (indeed, even more) in [13] there are quite a few simplifica- 
tions and assumptions which are not entirely justified. Therefore, in spite of the undoubt- 
ed success of this theory, we may assume that the problem of superfluid turbulence is still 
far from being completely solved. Some difficulties arising in the use of this theory are 

described below. 

In this connection it is useful to consider the question of ordinary turbulence developed 
in the normal component. In experiments in counterflow, in addition to the above-described 
critical flow there is another value at which the measured pressure drop is subject to the 

�9 7 4 7 4 i relatlon Vp ~ W / ~ v / (F g. i). The exponent 7/4 indicates that we are dealing with 
n 

classical turbulence. The onset of this regime was first described in [17] and is associated 
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with a Reynolds number constructed as follows: 

Re = ~Dv~ (20) 
i] 

It was found that the critical Reynolds number corresponding to the beginning of turbulence 
is strongly dependent on temperature, which is very strange. This gave rise to many discus- 

sions, and various kinds of corrections were proposed, but it appears that the problem of 
classical turbulence still has not been clarified. Construction of the Reynolds number on 

the basis of the total density corresponds, in the opinion of the authors of [17], to the fact 
that both components are turbulized simultaneously. However, such a view contradicts the 
ideas of two-velocity hydrodynamics. To see this, we note that until the appearance of quan- 

tum vortices, the motion of each component is independent of the other. The only mechanism 
of interaction is the mutual friction. We have already referred to the problem of the occur- 

rence of quantum vortices. It may be that this has something to do with questions of stabil- 
ity, but it is doubtful that such a complex phenomenon (even if it relates only to the super- 

fluid component) could be described by the criterion (20). 

We see the following situation. As a result of the action of several mechanisms, quan- 
tum vortices appear in the helium. The eonditions for their occurrence are less rigid than 
the conditions for the occurrence of classical turbulence in the normal component. For ex- 
ample, at a velocity of 1 cm/sec (it is known with certainty that vortex formation occurs at 
such a velocity) and a channel width of 0.i cm, we have Re = 300, which is much lower than 
the critical value. Nevertheless, the tangle of vortex lines, moving chaotically, perturbs 

the normal component, "shakes it up," and turbulizes it. As a result we find a picture of 
interaction between two types of turbulence (similar to the interaction between acoustic 
noise and turbulence). To describe such a complex cascade process by a single criterion of 

the type (20) makes no sense. 

2. Nonstationary Processes 

2.1. Acoustics of Superfluid Helium. . A special place in the investigation of heat ex- 
change in cryogenic systems is occupied by the problems of nonstationarity. This is associa- 
ted chiefly with the problems of reliability and stability. Of primary importance in this 

connection is the problem of rapid and effective heat removal. In order to clarify the pos- 
sibilities of helium as a refrigerant in such circumstances, we must consider the various 
manifestations of nonstationarity in the questions discussed above. It should be noted that 
a study of the nonstationary thermomechanics of He II is necessary for constructing a theory 

of heat exchange with a solid. In fact, the various heat-exchange crises and changes of 
regime result from the development of hydrodynamic processes taking place in the volume of the 

liquid. In this sense, an understanding of the hydrodynamic processes taking place in helium 
plays an auxiliary but necessary role. An example of such an approach is Kutateladze's theory 

of boiling crises [18]. It should be emphasized once again that the formal application of 
this theory to }{e II yields no results~ since the superfluid liquid is governed by its own 

hydrodynamic laws. 

In our study of nonstationary thermomechanical motions in He II, we may distinguish 
three regimes: I) The evolution of thermal disturbances is subject to the usual two-velocity 
hydrodynamics (1)-(4); 2) quantum vortices appear in the volume of the helium; 3) the pos- 
sibility of phase transitions is realized both in the gas and in the nonsuperfluid helium. 
The onset of these regimes cannot be unambiguously associated with the value of the heat flux. 
The rate of change of the flow and the time of action of the thermal load are equally impor- 

tant. 

In what follows, we shall consider the case of small flows and small velocities. As is 
known, in ordinary hydrodynamics, small perturbations in density and pressure are propagated 
as sound waves. Heat, on the other hand, is propagated in accordance with the heat-conduc- 
tion equation. If the entropy equation is taken into account, the sound will be damped. 

~at is the situation in He II? It appears that the heat is again propagated in the 
helium in the form of waves. This can be obtained in the usual manner. We linearized Eqs. 
(1)-(4) on the basis of their deviations from the equilibrium values. As is known, the sys- 
tem of linear equations has a solution in the form exp i(~t -- kr). The condition for the 
existence of nontrivial solutions of this system gives the relation between the frequency w 
and the wave number k -- the dispersion formula. Omitting some simple calculations, we find 

that ~ = cl,21kl, where 
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T h i s  means  t h a t  two k i n d s  o f  sound  w a v e s  a r e  p o s s i b l e  i n  He I I .  The k i n d  c o r r e s p o n d i n g  t o  t h e  
f i r s t  s o l u t i o n  i s  o r d i n a r y  sound  -- o s c i l l a t i o n s  i n  d e n s i t y ,  w h e r e  v n = v s . The s e c o n d  a c o u s -  
t i c  b r a n c h - -  t h e  s e c o n d  k i n d  o f  sound  -- d e s c r i b e s  t h e  n o n s t a t i o n a r y  v a r i a n t  o f  c o u n t e r f l o w .  
The total flow has a mass j = 0. In the second type of sound, the values of temperature and 
entropy oscillate about their equilibrium values, and 6p = 0. Thus, the second sound carries 
heat waves, and therefore it is sometimes referred to by the term "temperature waves." The 
velocity of the first sound is practically constant (with respect to temperature) and is equal 
to ci = 240 m/sec. The velocity of the second sound, c2, is strongly dependent on temperature 
(Fig. 4). 

The possibility of transmitting thermal disturbances by a wave method is not only unique 

but of great practical interest. A number of circumstances contribute to this. First of all, 
since all the quantities in the wave depend on x- c2t, the energy flux is proportional to c2 
and may become very large. Secondly, in sound, as experiments show, the critical velocity of 
vortex formation is not reached until large values, up to several meters per second, corre- 

spondingtofluxes of 50-100 W/cm 2, are reached (see [19]). Furthermore, as importan t as the 
heat flux is a characteristic of nonstationary heat exchange such as the typical time of tem- 

�9 2 

perature smoothing, Tty p. In ordlnary heat exchange ~typ = D /X.103 sec (D = 1 cm), and for 
boiling and convection T ~ 10-2-10 -i sec; on the other hand, for He II, Ttyp = D/c2 = i0 -4 
sec. Lastly, the wave mechanism provides excellent opportunities for controlling the heat 
exchange. Such phenomena as diffraction, interference, shock waves, etc., can all be utilized 
in applications. 

2.2. Nonlinear Acoustics of Superfluid Helium. A number of effects associated with the 
wave mechanism of heat transfer, as well as the possibility of their practical use, may be 
seen by considering the example of the nonlinear acoustics of He II. We associate with this 
a number of problems based on Eqs. (1)-(4), taking account of nonlinearity and viscosity. 
Vortex formation and phase transitions are not considered here. 

One of the problems in [7, 20] is devoted to the investigations of the evolution of 
strong temperature dependence in He II, Without going into details of the calculations, we 
give below the equations for the evolution of a heat pulse 6T(x, t) which is produced, say, 
by means of a heat flux W(t) at the boundary (x = 0): 

OI ~ c,,-~ o:(T) ~'% 6T 0ST 026T 

The c o e f f i c i e n t  o f  n o n l i n e a r i t y  a ( T )  i s  shown i n  F i g .  5 .  The  a b s o r p t i o n  c o e f f i c i e n t  g e i t h e r  
i s  made up o f  t h e  o r d i n a r y  k i n e t i c  q u a n t i t i e s  o r  [20]  r e p r e s e n t s  r e l a x a t i o n  dam p ing  n e a r  t h e  

p h a s e  t r a n s i t i o n  p o i n t .  

E q u a t i o n  (22)  can  be  r e d u c e d  t o  t h e  s o - c a l l e d  B u r g e r s  f o r m  and s o l v e d  e x a c t l y .  We s h a l l  
n o t  do so  h e r e  b u t  s h a l l  c o n s i d e r  some q u a l i t a t i v e  e f f e c t s .  I f  t h e  a m p l i t u d e  8T i s  s m a l l ,  
we c a n  d i s r e g a r d  t h e  s e c o n d  t e r m  w i t h i n  t h e  p a r e n t h e s e s  and o b t a i n  t h e  u s u a l  wave  e q u a t i o n ,  
whose solution is 6T = 6T(x -- c=t). Therefore the term ~a(T)6T is, in a sense, an increment 

added to the velocity; however, it is not constaint but depends on the local value of ~T. In 

other words, different segments of the wave profile move at different velocities. For exam- 

ple, when ~(T) > 0, the crest of the wave rushes against the "trough," forming what is called 
a shock front. When ~(T) < 0, the situation changes and the shock front is formed far away. 
For pulse with a negative sign, when e(T) < 0, we may have the formation of a shock wave of 
"cold" -- a phenomenon which is specific to helium and can be used for pulsed cooling. 

In the linear case, the first and second sounds are practically independent.* In the 
nonlinear case there is an interaction between the wave modes. We may find such a curious 
effect as nonlinear conversion of one sound into another [21]. In connection with this, it 
is also of interest to consider the question of the nonlinear conversion of "noise" of the 
first sound into noise of the second sound. There are often reasons (vibrations, instabili- 
ties) leading to the appearance of the noise of ordinary sound. As a result of the nonlinear 

*They are related to the value $1np/~in T = i0-3-i0 -4, which is negligibly small for helium. 
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Fig. 4. Velocity of the second 
sound, c2 (m/sec), as a function 
of temperature. 

O 

- -  f - 

Fig. 5. Dimensionless coefficient 
~(T) as a function of temperature. 

transformation of the first sound into the second, noise of the second sound appears in the 
system. Therefore, if we wish to solve the problem of the evolution of thermal disturban- 
ces -- the fundamental problem of nonstationary heat exchange -- we must take account of the 
fact that this disturbance is propagated not in a liquid at rest but against a background 
of strong noise, the so-called phenomenon of acoustic turbulence. As is known this leads to 
additional damping and dispersion, and both are expressed by the correlation characteristics 
of the noise. In [22] these spectral characteristics were found on the basis of the result- 
ing kinetic equations for chaotic waves. 

It is interesting to consider nonlinear effects in problems which are more than one- 
dimensional, e.g., in the propagation of broad bundles of the second sound. One such problem 
was investigated in [23], in which it was shown that at temperatures close to T~ (T~ is de- 
fined as the temperature at which the nonlinear increment to the velocity of the second sound 

vanishes: ~(T ) = 0), the initially broad bundle of monochromatic thermal waves undergoes a 
self-focusing action as a result of nonlinearity and is compressed to dimensions of the order 
of one wavelength. This interesting phenomenon may be used for the directed transfer of 

thermal energy in superfluid helium. 

This area also includes the still unsolved problem of a broad bundle of thermal waves 
at temperatures other than T~. Here the behavior of the wave is complicated by the formation 
of a shock front. However, it is qualitatively clear that when ~(T) > 0, the segments with 
large values of ~T move forward, the front becomes convex, and this leads to a defocusing ac- 
tion. On the other hand, when 6T < 0, such a wave will be focused (see [24]). The focusing 
of the wave means that on the axis of the bundle 6T may reach very large negative values. 
This phenomenon can undoubtedly be used for cooling local segments of specimens. 

Here we may also mention a study [25] of a method for measuring the thermal resistance 
of the boundary (the Kapitsa jump) by the methods of nonlinear acoustics. 

2.3. Nonstationary Vortex Formations. The existence of critical rates of vortex forma- 
tion, discussed above, is extremely important in connection with heat transfer in He II. In- 
deed, the transition from laminar to turbulent flow, as we have seen, is accompanied by a 
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sharp increase in the temperature drop. As a result, there are areas of overheating and an 
increased danger of transition to boiling, after which the high thermal conductivity of He II 

"fades" against the background of the high thermal resistance of the vapor film. 

As mentioned earlier, under stationary conditions the heat flux may take on very high 
values (up to i00 W/cm 2) [19], while the stationary critical fluxes are W z 10-a-10 -2 W/cm 2. 

The reason for this phenomenon is that the mechanism of formation of quantum turbulence re- 

quires a finite time Tturb in the aforementioned experiments, where the signals lasted no more 
than 30-50 Dsec, this time value was not reached. Two important questions arise in this con- 
nection: a) how superfluid turbulence develops in He II; b) in what manner the thermal wave 
is propagated if there are quantum vortices in its front. 

The first question has been studied to some extent. Here we should mention , first of 
all, Vinen's classic study [13]. In his experiments (on the basis of which he developed his 
theory, discussed above) the turbulence was probed by means of the second sound, propagated 
across the counterflow. When the vortex tangle was formed, the amplitude of the second sound 

was reduced as a result of the mutual friction, and as it varied, it was possible to assess 
the nature of the growth of L. The law obtained on the basis of these experiments for the 
growth of the tangle agrees with Eq. (17), but not for small values of L. As L § 0, this 
equation leads to a strong contradiction. We define the time of development of the turbu- 

lence Zturb as the time necessary for the tangle to increase to half of its ultimate value. 
From (17) it follows that 

O,~L eq  

j ' d L  
lturb--=- ~ [ v ~  - -  v~ [ L 3 / ' - ' -  ~ L  'a " ( 2 3 )  

0 

It can be seen at once that the integral diverges at the lower limit, Tturb -~ ~. The origin 
of this divergence is obvious. Formula (17) is the balance equation for the growth and anni- 

hilation of the vortex lines which already exist. When there are no such lines, there is 
nothing to grow. In other words, this equation does not include the mechanism of spontaneous 
generation of the vortex lines in He II. 

Actually, of course, Vinen observed finite values of Tturb. It was found that Tturb 
depends substantially on the heat flux density W. Vinen [13] proposed the following empiri- 
cal formula: 

Tturb : a (T) W - 3  / 2, ( 2 4 )  

where a(T) is a quantity of the order of 0.i Wa/2.sec/cm 3 and depends slightly on the geome- 
try. 

In order to correct the theoretical situation, Vinen introduced into Eq. (17) an addi- 
tional term of the form ~IVn -- Vsl s/2 (here ~ is an adjusting coefficient). Then the inte- 
gral (23) does not diverge but yields an expression which coincides with (24). However, the 

argument used in introducing such a term is highly dubious. For example, in (23) we could 
"cut off" the integral at the lower limit in an appropriate manner, which physically means 

that there are "virtual" vortices in the helium. 

Formula (24), as mentioned before, was obtained experimentally . The heat fluxes W did 
not exceed 1 W/cm 2, which yields Tturb z 0.i sec. The investigation of the kinetics of the 
turbulence is extremely important, in particular that of Zturb(W) at flux values which may 
occur in cryogenic systems (up to i00 W/cmi). 

In addition to the question of the time T t I there is another very important question 
concerning the possibility of using Eq. (7) to ~cribe such a clearly nonequilibrium situa- 
tion as the evolution of a supercritical thermal disturbance [question b), see above]. The 
fact is that the derivation of this equation is based to a large extent on the calculation 
of the forces acting on the vortex lines. In the quasiequilibrium case these forces are pro- 
portional to v (t) -- Ys(t). In the general case they may depend on the time derivatives and 
possibly on th~ gradients of v (t) and Vs(t). This, of course, must affect the form of Eq. 
(17). However, it seems that ~hese nonequilibrium effects have only a slight influence. 
This conclusion is based on the fact that in experiments on the propagation of the second 
sound across a supercritical counterflow, the variation of its velocity (and precisely this 
effect must result from the presence of dVn/dt and dWs/dt in the equation for L) is very 
slight, Aci/c2 ~ 10 -4 . Moreover, this variation can be explained within the framework of the 

Vinen--Schwarz equation (17) [26]. 
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If we omit these two difficulties from consideration for the time being (and also other, 
less important defects of the Vinen--Schwarz theory), it becomes clear that the problem of the 
evolution of supercritical thermal disturbances must be solved on the basis of a system of 

equations which combines the hydrodynamic equations (i)-(4) with (17) in the proper manner. 
Such a combination was carried out in [26], yielding a closed system of equations for the 

collection of quantities p, j, S, Vs, L, which completely describe the state of the turbulent 
helium. 

It should be emphasized once more that these equations were obtained by disregarding the 
defects of the Vinen--Schwarz theory and may be regarded as a first, crude approximation to 
reality. 

Summing up, we can say that we do not yet have an apparatus for solving the problem of 
the development of thermal disturbances with a turbulent front. What is more, the construc- 

tion of such an apparatus is significantly limited by the inadequacy of the experimental data. 

Among other studies devoted to the kinetics of quantum turbulence, we should mention [27] 
on the development of turbulence in long tubes. However, the results of that study can hard- 
ly be used for constructing the necessary theory. 

2.4. Phase Transitions. In the preceding two sections we have formulated problems of 
heat transfer in the volume of the helium, which can, at least in theory, be solved in the 
framework of two-velocity hydrodynamics. 

As the thermal load increases further, or as its duration increases, the above-described 
processes will take place only during the first few moments. For example, in the transition 
to a turbulent regime, there will be a sharp increase in the temperature drops, after which 
there may be phase transitions both in the helium vapor and in the nonsuperfluid He I. 

The dynamics of the formation of such transitions is the area which has been least stud- 
ied. Although, as mentioned in the introduction, there are a large number of studies on the 
boiling of He II, they are restricted essentially to measurements of critical fluxes (at 
which phenomena of the boiling type occur) and of the heat-transfer coefficient in the boil- 
ing regime. 

Continuing along our logical line, we would like to turn our attention to the following 
formulation of the problem. What is the manner of development in superfluid helium of a ther- 
mal disturbance described by supercritical parameters, i.e., parameters such that the tempera- 
ture and pressure within such a disturbance satisfy the condition for phase transition (eith- 
er He II--He I or He II--vapor)? 

The problem of the He II--vapor transition, i.e., the problem of the formation of film 
boiling, is very close to the classical problem. Here hydrodynamics plays an auxiliary role, 
and it appears that the general theory* in this case can be set up on the basis of ideas con- 
cerning the boiling of ordinary liquids. Somewhat more complicated (although perhaps it might 
be better to call it more unusual) will be the problem of the development of a phase transi- 

tion of the second kind, such as the transition He II--He I. The solution of problems of this 
kind involves some very subtle and complicated questions in the dynamics of fluctuations and 
belongs to the realm of basic rather than applied physics. There are very few experimental 

studies available. To be sure, we should note that among the above-mentioned studies on heat 
exchange the authors have sometimes observed some features of a transition to film boiling 

(e.g., the process of growth of a vapor film observed by Caspi and Frederking [28]). If we 
do not count these relatively uninformative references, we may perhaps list only two useful 
studies. 

In [29] Peshkov observed that as the heat flux in He II increases, there appears an He I 
zone which, depending on the value of W, moves with different velocities, even coming to rest 
at some flux value. The existence of this zone was recorded by optical methods based on the 
increase in density and temperature. The temperature and density jump at the boundary indi- 
cates that when there is a heat flux, the transition between He II and He I becomes a phase 
transition of the first kind, and the boundary has finite heat resistance. Unfortunately, this 
study is the only one of its kind, even though this problem is of unquestionable theoretical 
and practical interest. 

*Here we are talking about the theory of boiling in the thermophysical sense, i.e., the cal- 
culation of boiling crises, the heat-transfer coefficients, etc. However, it is also possible 
to solve a problem analogous to Stefan's problem on the dynamics of the interface boundary. 
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The second group includes a study by Van Sciver [30] on the kinetics of film boiling, in 
which he obtained an interesting relation for the time of formation of the helium film as a 

function of the heat flux: 

Tboil= BW-~, (25) 

where B is a value of 4 8 the order of i00 W /cm -sec. The tlme T b i was fixed on the basis of a 
sharp increase in the temperature of the heater, and therefore~ was impossible to guarantee 
that Van Sciver observed film boiling. The formation of a film of nonsuperfluid helium, for 
example, should also lead to this result. 

This is perhaps all we can list in the way of studies devoted to the dynamics of phase 
transitions. An understanding of these phenomena is of the first importance for the con- 
struction of a theroy of heat exchange in He II. We may hope that more studies along this 
line will come in the future. 

Thus, as we have seen, the theory of heat exchange in He II is far from complete. There 
have been definite achievements, such as the Vinen--Schwarz theory or studies on nonlinear 
acoustics, but these are only isolated fragments. There remain many problmes of varying de- 
grees of complexity and importance, some of which are closely linked to unsolved classical 
problems (such as turbulence and kinetics of boiling). These are mainly problems in basic 
physics, and their solution will require a great deal of time and effort. 

Nevertheless, it appears that even today some results, including those mentioned in this 
survey, can be used for practical calculations of cryogenic installations using superfluid 
helium. 

In our view, the study of heat exchange with superfluid helium should be developed along 
two main lines. One of these is the investigation of problems associated with direct techno- 
logical applications, such as the determination of boiiing crises and heat-transfer coeffi- 
cients, the effect of various factors under conditions most close]y resembling real cases~ 
As mentioned before, a great many studies of this kind have been published recently (see 
[2-4]). The second line of investigation includes those studies which would most rapidly 
bring about the construction of a general theory of heat exchange in He II. Among them are, 
for example, studies on the development of superfluid turbulence, the formation of quantum 
vortices, or, say, the investigation of the dynamics of the transition He II--He I. These two 
lines of research need not, of course, be independent. Furthermore, each is necessary for the 
other. For, on the one hand, applied experimental investigations can establish the adequacy 
of the theoretical models, and On the other hand, theoretical investigations will facilitate 
more purposeful experimentation. 

The author is very grateful to Professors K. W. Schwarz, T. H. K. Frederking, S. Pater- 
man, and S. W. Van Sciver for reprints of their articles. I also wish to express my gratitude 
to Academician S. S. Kutateladze for his support and his interest in the work. 

NOTATION 

p, density of He II; T, temperature; ~, heat flux density; p, pressure; Ps' Qn, densi- 
ties and Vs, Vn, velocities of superfluid and normal components, respectively; j, jo, mass 
flux densities in the laboratory system of coordinates and in the case v s = 0, respectively; 
S, o, entropy per unit volume and unit mass, respectively; E, energy per unit volume; ~, 
chemical potential, equal to (~E/$P)s; q, coefficient of shear viscosity; %, thermal conduc- 
tivity; D, a, dimension of the system (radius of capillary); C(T), coefficient in the formula 
for the effective thermal conductivity in supercritical regime; A(T), coefficient in the for- 
mulaforthe Gorter~ellink force; ~, p, energy and momentum of elementary excitation; E', en- 
ergy of elementary excitation in laboratory system; V, velocity of motion of the helium as a 
whole; ~, Planck's constant; mHe , mass of helium atom; L, total length of vortex lines per 
unit volume; ~ = L7 I/2, characteristic intervortex distance; ~, B, coefficients in the Vinen-- 
Schwarz equation; f, frictional force per unit vortex length; Fsn, force of mutual friction 
(per unit volume); %(v7, t), distribution function for length of vortex lines; ci and c2, 
velocities of first and second sound, respectively; X, thermal diffusivity; ~(T), coefficient 
of nonlinearity (see 2.2); ~, damping coefficient of second sound; Tturb , characteristic time 
of formation of superfluid turbulence; a(T), coefficient for time of vortex formation (see 

(2.3); Tboil, characteristic time for boiling. 
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Remark at Press Time. In Sec. 2.3 we stated the view that the high heat fluxes observed 
in experiments on nonlinear acoustics were achieved because of the finiteness of the time of 

vortex formation, T ., which was not exceeded in the studies cited. This view was, to some 
Kurd 

extent, confirmed in a recently published study by S. K. Nemirovskii and A. N. Tsoi entitled 
"Generation of vortices in He II by a large heat pulse," [Pis'ma Zh. Eksp. Tekh. Fiz., 35, No. 
6, 229-231 (1982)]. In an experiment conducted according to Vinen's scheme it was found that 
there is strong damping of the second sound in the wake of a sufficiently long powerful heat 
pulse, which indicates the presence of quantum vortices. 
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